Homoclinic Orbits in Near-Integrable Double Discrete sine-Gordon Equation

نویسنده

  • Vassilios M. Rothos
چکیده

We establish the existence of homoclinic orbits for the near{integrable double discrete sine-Gordon (dDSG) equation under periodic boundary conditions. The hyperbolic structure and homoclinic orbits are constructed through the B acklund transformation and Lax pair. A geometric perturbation method based on Mel'nikov analysis is used to establish necessary criteria for the persistent of temporally homoclinic orbits for the class of dDSGequations with dissipative perturbations. 1991 MSC 46, 58F07 PACS 02.30Ks, 02.40Vh, 05.45.-a Supported by a TMR postdoctoral fellowship No. ERBFMBICT983236 of Commission of the European Communities, and an EPSRC Grant No. GR/R02702/01.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homoclinic Intersections and Mel'nikov Method for Perturbed sine -Gordon Equation

We describe and characterize rigorously the homoclinic structure of the perturbed sine{ Gordon equation under periodic boundary conditions. The existence of invariant manifolds for a perturbed sine{Gordon equation is established. Mel'nikov method, together with geometric analysis are used to assess the persistence of the homoclinic orbits under bounded and time-periodic perturbations.

متن کامل

Mel’nikov Analysis of Homoclinic Chaos in a Perturbed sine -Gordon Equation

We describe and characterize rigorously the chaotic behavior of the sine– Gordon equation. The existence of invariant manifolds and the persistence of homoclinic orbits for a perturbed sine–Gordon equation are established. We apply a geometric method based on Mel’nikov’s analysis to derive conditions for the transversal intersection of invariant manifolds of a hyperbolic point of the perturbed ...

متن کامل

Integrable mappings derived from the ∆∆RsG equation

In this paper we consider the integrability of the mappings derived from the double discrete related sine-Gordon (∆∆RsG) equation, which we recently introduced in the paper Higher dimensional integrable mappings, under an appropriate periodicity condition.

متن کامل

Topology and Sine-gordon Evolution of Constant Torsion Curves

The sine-Gordon equation with periodic boundary conditions describes integrable dynamics on the space of closed curves of constant torsion, for which multi-phase solutions provide large classes of canonical knot representatives. In this letter we discuss the use of Bäcklund transformations for studying the topological properties and symmetries of multi-phase solutions and of their homoclinic ma...

متن کامل

Ultradiscrete sine-Gordon Equation over Symmetrized Max-Plus Algebra, and Noncommutative Discrete and Ultradiscrete sine-Gordon Equations

Ultradiscretization with negative values is a long-standing problem and several attempts have been made to solve it. Among others, we focus on the symmetrized max-plus algebra, with which we ultradiscretize the discrete sine-Gordon equation. Another ultradiscretization of the discrete sine-Gordon equation has already been proposed by previous studies, but the equation and the solutions obtained...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001